Продолжая просмотр данного сайта, вы подтверждаете свое согласие на использование нами файлов cookie. Узнать подробнее. Закрыть
Каждое техническое средство обладает уникальными параметрами. В ходе практической деятельности выработаны методы по контролю и подтверждению данных параметров: испытания, проверки, калибровки, поверки. Созданы системы качества, программы постановки на производство и прочие регламенты, управляющие процессом выпуска продукции с требуемыми характеристиками.
На данный момент в отношении типовых агрегатов выпускаемых технических средств существуют стандартные методы контроля (измерений) их параметров, зафиксированные в ГОСТах и конструкторской документации, а также имеющие достаточную степень детализации и актуализируемые по мере необходимости в связи с появлением новых измерительных технологий и средств измерений.
Мы, производители такого типового технического средства, как источник питания (ИП) постоянного тока, были полностью уверены, что все методики измерений контролируемых параметров стандартизованы и апробированы тысячью пользователей и практически совершенны в методологическом плане. Но практическая деятельность заставила нас усомниться в данном утверждении.
Своеобразной темной лошадкой источников питания стал такой параметр, как пульсации электрического тока — достаточно распространённая техническая характеристика, активно применяемая при нормировании параметров источников питания. Методология его контроля проста как в техническом плане, так и в практической реализации.
Определение пульсаций выходного тока проводят методом косвенных измерений, определяя падение напряжения на нагрузке микровольтметром переменного напряжения В3-57 (рис. 1).
В большинстве методик поверки определение погрешности прибора выполняется при максимальном выходном токе и напряжении, равном 90% от конечного значения диапазона измерений.
Определение пульсаций проводят в следующем порядке:
ИП считается прошедшим поверку по данному пункту, если значение пульсации выходного тока в режиме стабилизации тока не превышает 5 мА среднеквадратического значения.
Однако реализация описанного метода различными пользователями при, казалось бы, широких допусках продемонстрировала огромный разброс данного параметра, зачастую превышая пределы допусков в десятки раз.
Несложное исследование данного метода измерения дало интересные результаты. Применение при контроле пульсаций двух номиналов катушек сопротивлений Р310: 0,01 Ом и 0,001 Ом показало тысячекратное изменение уровня пульсаций при использовании одного и того же режима работы ИП, хотя по закону Ома значения измеряемого переменного напряжения должны были отличаться не более чем в 10 раз. Опыты при применении катушки Р323 номиналом 0,0001 Ом подтвердили эту тенденцию и показали полную несостоятельность предложенного метода измерений.
Было замечено значительное уменьшение уровня пульсаций при применении скрутки измерительных проводов, что натолкнуло нас на мысль исследовать вопрос электромагнитной составляющей природы этого явления (рис. 2).
Рис. 2. Измерительный кабель В3-57. Применение скрутки измерительных проводов значительно влияет на результат измерений пульсаций
Нормированные уровни индустриальных помех, допускаемые для современной техники, определяются множеством ГОСТов в зависимости от специфики устройства. Общая методика определения данного уровня помех регламентирует контроль параметров на уровнях единиц мкВ на расстоянии 3 и 10 м от испытуемого изделия. Однако на практике средства измерений находятся в непосредственной близости друг от друга, и уровни фактических помех, воздействующих на измерительные цепи средств измерений, никем не контролируются и должным образом не учитываются.
Применительно к нашему случаю мы провели практическое исследование уровня помех, регистрируемых измерительной схемой при контроле пульсаций (В3-57), и пересчитали в величину уровня пульсаций. Полученные результаты объяснили разброс показаний, наблюдаемый при контроле пульсаций разными пользователями и лабораториями.
Анализ гостированных методов измерений пульсаций, выполняемых при помощи осциллографа по ГОСТ 18953-73, показал незаконность использования данного метода в настоящее время, но на практике измерение по ГОСТ 18953-73 практически не применяется в утвержденных методиках поверки. Ранее действующий ГОСТ отменен и внедрен международный ГОСТ Р 54364-2011 (IEC 61204:2001) «Низковольтные источники питания постоянного тока. Эксплуатационные характеристики», регламентирующий новые подходы в контроле пульсаций:
Практическое применение данных методов вызвало больше вопросов, чем их отмена: при их использовании зафиксировать какие-либо критические уровни пульсаций не удалось. ТаРис. 3. Оснастка для контроля пульсаций по ГОСТ Р 54364-2011 ким образом, создается впечатление, что любой выпускаемый сегодня ИП гарантированно не имеет критических уровней пульсаций (рис. 3).
Рис. 3. Оснастка для контроля пульсаций по ГОСТ Р 54364-2011
Метод испытания нагрузочной вилкой (рис. 4) показал свою низкую чувствительность, начинающуюся на уровне 3 мА. При этом метод определяется чувствительностью токового пробника (токовых клещей) при контролируемом уровне пульсаций по току в диапазоне 2–5 мА.
Рис. 4. Метод испытания нагрузочной вилкой
Анализ методик измерений других производителей, в том числе иностранного производства, поражает многообразием применяемых способов. В зависимости от технического исполнения и мощности ИП разнятся и методы контроля данного параметра:
В конечном итоге все указанные методы сводятся к контролю уровня переменного напряжения.
Проведя анализ схемотехнических решений в исполнении источников питания, мы пришли к выводу, что пульсации постоянного тока — это характеристика стабилизатора ИП в режиме стабилизации тока. Пульсации тока выражены безразмерной величиной относительно величины рабочего тока и определяются двумя факторами:
Анализ составляющих формулы (1) показывает, что величина постоянного и переменного тока напрямую зависит от нагрузки, на которую работает ИП, разного поведения одной и той же нагрузки для постоянного и переменного тока (активной и реактивной составляющей).
При производстве универсальных источников питания нет информации о специфике будущей рабочей нагрузки, и при настройке и регулировке используется нагрузка, имеющая в большей части активную составляющую. Логично выглядит идея, что и при проведении контрольных операций с источником питания следует применять аналогичную нагрузку, имеющую в большей степени активную составляющую.
Анализ методов контроля пульсаций показывает активное применение электронных нагрузок. Функционал данных устройств, безусловно, удобен для воспроизведения необходимых режимов работы ИП. Но для контроля параметров пульсаций ИП критичным параметром становятся собственные пульсации и стабильность работы электронных нагрузок, которые в должном объеме никто не исследовал. Поэтому применение в методиках контроля пульсаций данных устройств, по нашему мнению, неприемлемо. В процессе производства ИП для контроля технических параметров нами было разработано устройство, максимально учитывающее специфику измерительной задачи, — реостат электронно-управляемый (РЭУ), технические характеристики которого приведены в таблице.
В основу конструкторского решения реализации РЭУ легли реальные сопротивления, серийно выпускаемые отечественной промышленностью. Подбор номиналов и нагрузочной способности данных резисторов определяется режимом работы источника в контролируемой точке. Избыток тепла, выделяемого на нагрузке, отводится из корпуса РЭУ при помощи принудительной вентиляции.
Запас по мощности на нагрузочных сопротивлениях, низкие требования к точности задания номинала сопротивления и система внутреннего мониторинга измерений — система защиты позволяет использовать измерительные точки других режимов работы РЭУ для более тщательного исследования поведения управляющей системы источника питания и корректности функционирования во всем диапазоне работы, исключая возможность повреждения РЭУ.
Фактически при поверке (проверке, калибровке) ИП необходимо проверить (изучить):
Для успешного выполнения этих задач РЭУ обладает следующими особенностями:
Плата коммутации выполнена на мощных транзисторах, исключающих процесс искрообразования и значительные потери на самом элементе. Конструкция плат выполнена с максимальным экранированием от генерирования собственных наводок на внешние проводники и улавливания внешних.
Конструктивно корпус РЭУ (рис. 5) выбран в исполнении, максимально исключающем прохождение внешних наводок внутрь корпуса. Разделение узлов и расположение их внутри корпуса минимизирует возможное взаимное влияние и распространение внутри корпуса потенциальных наводок. Измерительная часть дополнительно экранирована. Контрольный шунт выполнен из манганинового сплава, что в долгосрочной перспективе гарантирует стабильные характеристики его номинала.
Рис. 5. Реостат электронно-управляемый РЭУ-03
Внутренние источники питания, необходимые для работы цифровой части РЭУ, выполнены в индивидуальных модулях и отделены экранами от самих нагрузочных сопротивлений и измерительной части схемы.
Все эти конструкторские решения позволили нам минимизировать величины вероятных наводок до уровня десятых милливольт и миллиампер. Дальнейшая работа по уменьшению собственных наводок не представляется целесообразной, так как нормированные уровни контролируемых пульсаций составляют единицы милливольт (миллиампер).
Презентация данной нагрузки на выставках и общение с представителями заинтересованных организаций показали актуальность нашей разработки для практикующих метрологов и подсказали пути дальнейшей модернизации РЭУ, по окончании которой устройство можно будет использовать как для работы на переменном напряжении, так и для калибровки трансформаторов тока.
Таблица. Основные технические данные и характеристики РЭУ-03
Наименование параметра | Значение параметра |
---|---|
Питание прибора | От сети 220 В, 50 Гц |
Напряжение на нагрузке: – низковольтный вход – высоковольтный вход |
0–75 В 0–300 В |
Максимально допустимое напряжение на низковольтном входе | 85 В |
Максимально допустимое напряжение на высоковольтном входе | 400 В |
Допускаемый ток в нагрузке | 0,001–20 А |
Диапазон нагрузки | 0,09–3000 Ом |
Допускаемое отклонение от номинального значения сопротивления нагрузки | 8% |
8 Уровень собственных пульсаций РЭУ в диапазоне рабочих режимов: – по напряжению, не более – по току, не более |
0,3 мВ 0,3 мА |
Допускаемая мощность рассеивания в нагрузке | 0–490 Вт |
Потребляемая мощность РЭУ | не более 25 В·А |
Время установления рабочего режима, не более | 1 мин |
Масса, не более | 18 кг |